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ABSTRACT

Background: Currently, MRI-only radiotherapy (RT) eliminates some of the concerns
about using CT images in RT chains such as the registration of MR images to a separate
CT, extra dose delivery, and the additional cost of repeated imaging. However, one
remaining challenge is that the signal intensities of MRI are not related to the
attenuation coefficient of the biological tissue. This work compares the performance
of two state-of-the-art deep learning models; a generative adversarial network (GAN)
and a residual network (ResNet) for synthetic CTs (sCT) generation from MR images.
Materials and Methods: The brain MR and CT images of 86 participants were
analyzed. GAN and ResNet models were implemented for the generation of synthetic
CTs from the 3D T1-weighted MR images using a six-fold cross-validation scheme. The
resulting sCTs were compared, considering the CT images as a reference using
standard metrics such as the mean absolute error (MAE), peak signal-to-noise-ratio
(PSNR) and the structural similarity index (SSIM). Results: Overall, the ResNet model
exhibited higher accuracy in relation to the delineation of brain tissues. The ResNet
model estimated the CT values for the entire head region with an MAE of 114.1+27.5
HU compared to MAE=-10.9+147.0 HU obtained from the GAN model. Moreover, both
models offered comparable SSIM and PSNR values, although the ResNet method
exhibited a slightly superior performance over the GAN method. Conclusion: We
compared two state-of-the-art deep learning models for the task of MR-based sCT
generation. The ResNet model exhibited superior results, thus demonstrating its
potential to be used for the challenge of synthetic CT generation in PET/MR AC and
MR-only RT planning.

INTRODUCTION

Computed tomography (CT) plays a significant
role in treatment planning and dose calculation in the
radiation therapy (RT) chain by providing
3-dimensional attenuation coefficient maps. These
are used to calculate organ and tissue-specific doses
(1. Modern techniques, such as intensity-modulated
radiation therapy (IMRT) and volumetric-modulated
radiation therapy (VMAT), rely on anatomical images
to accurately define the target and organs at risk
(OAR) for proper dose delivery (I 2. In clinical
practice, the use of magnetic resonance imaging
(MRI) for treatment planning is increasing due to the
high contrast soft-tissue discrimination and sharper
organ boundaries possible in comparison with CT
imaging. Moreover, some studies have shown
that functional MRI information, including
diffusion-weighted imaging (DWI) and dynamic

contrast-enhanced imaging, could aid in identifying
active tumor sub-volumes in head and neck cancer (3)

Currently, MR images are integrated into the RT
chain through a rigid or deformable registration to
the reference CT image for the precise delineation of
the target volume and OAR. The electron density
information from CT images is used for dose
calculations (2.3). However, errors associated with MR
to CT image registrations introduce a systematic
uncertainty leading to a significant dosimetric impact,
particularly for small tumors in the vicinity of OARs .
5). To avoid these errors in RT planning as well as to
reduce the cost of therapy, MRI-only RT planning is
introduced which only relies on MR images in the
radiotherapy workflow. MRI-only RT obviates the
need for MR and CT image registration and
additionally decreases the number of imaging
sessions (CT imaging) and its associated costs in a
workflow. This leads to a reduction in the received
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dose, particularly for the patients requiring multiple
scans during their treatment process (1-3.5). However,
MRI-only RT planning faces the challenge of
geometric distortion due to the magnetic field
non-uniformity, the absence of a cortical bone signal
in conventional MR images (¢ 7), and the lack of an
attenuation coefficlent map & 9. The primary
challenge for MR-only RT planning stems from the
fact that the signal intensities of MRI correlate with
the tissue proton density and tissue relaxation
properties. MR signals do not relate to the photon
attenuation coefficients of the tissues. On the other
hand, the voxel intensity of the CT images directly
reflects the radiological characteristics of the tissue
(M. The same challenge is faced by the MR-based
attenuation correction (MRAC) in the hybrid PET/MR
to convert the patient’'s MR image into an attenuation
coefficient map. In this regard, a number of
approaches have been proposed for the generation of
synthetic (pseudo) CT images from MRI data (10-12),

There are three major categories of methods for
synthetic CT generation: tissue segmentation (13),
atlas (& 8, and artificial intelligence (4. Tissue
segmentation-based approaches create attenuation
or photon coefficient maps via the bulk segmentation
of MR images into few tissue classes followed by the
assignment of their corresponding coefficient values
(13,15), Discriminating between bone and air tissues is
one of the major challenges since bone and air have
very low and roughly similar signals on conventional
MR sequences. The use of other MR sequences, such
as the ultra-short echo time (UTE) and zero-echo-
time, has eliminated this problem. However, these
sequences also suffer from an increased scanning
time or low signal-to-noise ratio (5 16, The
atlas-based approach consist of deformable
registration algorithms for the purpose of aligning
the target MRI to the numbers of MRIs in an atlas
database, followed by the assignment of CT numbers
in the atlas database for each voxel of the target MRI
(11,17),

Recently, machine learning, especially
convolutional neural networks (CNN), has emerged
as a promising approach to improve the quality
of medical image analysis including image
segmentation, denoising, reconstruction, and
particularly synthesizing pseudo-CTs from MR
images (18 19), Many studies have been conducted to
address the challenge of synthetic-CT generation
from MR images wusing different algorithms/
architectures or convolutional neural networks.
However, only a few deep learning models are being
frequently used due to their robust, accurate, and
reliable  performance. Generative adversarial
networks (GAN) and residual networks are among
the highly popular deep learning models that have
shown promising results in various fields of medical
image analysis (20-25)., GAN networks, owing to their
sophisticated architecture benefiting from the

generator and discriminator compartment, and
residual networks, owning to their large receptive
fields, are able to offer relatively optimal solutions for
a vast range of image-related problems such as
transformation and segmentation.

This study set out to compare two state-of-the-art
deep learning models, specifically the generative
adversarial network (GAN) and residual network, for
the task of MR-guided synthetic CT generation.
Although many approaches/algorithms have been
proposed in the previous works concerning the
generation of synthetic (pseudo) CT images from MRI
data (6-8.13,14) deep learning-based approaches are of
special interest owing to their promising and
superior performance (10.26), Among the various deep
learning models, GAN and residual deep learning
models are frequently used for different purposes in
clinical and research settings (25-29). The major aim of
this study was to compare the two popular deep
learning models for the challenging task of
MR-guided synthetic CT generation related to their
application in MR-only radiation planning (1119 and
MR-guided PET attenuation correction (11).

MATERIALS AND METHODS

CT and MRI data acquisition

The patient population consisted of 46 men (mean
age: 61+12 years, mean weight: 79.3+11 kg) and 40
women (mean age: 57+7 years, mean weight:
71.2£10 kg) who underwent brain CT and MRI scans.
The clinical indications included neurodegenerative
disease (40 men and 30 women), epilepsy (3 men
and 5 women), and different graded brain tumors (3
men and 5 women). This study was approved by the
Ethics code of 241345CH (date: 20/10/2018). The
MRI scans were performed using 3T MAGNETOM
Skyra (Siemens Healthcare, Erlangen, Germany) with
a 64-channel head coil using a T1-weighted
(magnetization-prepared rapid gradient-echo
(MP-RAGE)) sequence and the parameters of TE/TR/
TI, 2.3 ms/1900 ms/970 ms, flip angle 8% NEX = 1.
The T1-weighted MR images were saved in a matrix
dimension of 255x255x250 with a voxel size of
0.86x0.86x1 mm. The CT image acquisitions with 120
kVp and 20 mAs were performed on a Toshiba
Aquilion (Toshiba Co., Tokyo, Japan). The matrices of
CT images were 512x512x149 voxels with a voxel
size of 0.97x0.97x1.5 mm.

Due to the fact that the MRI and CT image
acquisitions were not performed simultaneously, the
MR images were aligned to the corresponding CT
images. To this end, a mutual information-based
image registration algorithm, which performs a
combination of rigid and non-rigid deformation
implemented in Elastix platform (based on the ITK
library) (https://elastixlumc.nl/, Netherlands), was
employed to align the MR and CT images. Afterwards,
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the resolution of the aligned MR images was
converted to the resolution of the corresponding CT
images as a preprocessing step for the training and
validation processes.

Network architecture

This study set out to compare two state-of-the-art
deep convolutional neural network algorithms in the
context of MR-guided synthetic CT generation. These
include the ResNet and GAN models which have been
extensively employed for the task of image
segmentation and inter-modality image regression. In
the following sections, the architecture of the two
deep learning models has been described.

ResNet architecture

Deep residual networks, formed by a number of
residual blocks, were introduced by He et al to
address the degradation problem in the training
process of deep neural networks and to reduce the
computational cost 9. Residual or shortcut
connections result in skipping one or more layers in a
network to address the gradient vanishing issue
causing the direct propagation of signals in forward
and backward paths from one block to other blocks
(figure 1). It should be noted that a network with n
residual blocks which has 2» unique paths would
result in decreasing the effective receptive field.
Therefore, the incorporation of residual connections
in the training of a network would reduce the border
effects of convolution leading to decreased distortion
near to the borders.

The proposed architecture of ResNet, illustrated
in figure 2, consists of 20 convolutional layers
wherein every two convolutional layers are stacked
together by residual connections. Each convolutional
layer is composed of an element-wise rectified linear
unit (ReLU) and a batch normalization (BN) layer.
The network takes the MR images as the input and
provides stimulated CT images as the output. In the
initial layers, 3x3x3 filters are applied that are
related to the low-level image features. To extract the
mid-level and high-level image features, the number
of kernels is multiplied by a factor of two or four in
the deeper layers. The output of the final layer, the
fully connected softmax layer, is in the same
dimension as that of the input image (20),

Toker gy (1-7)
1e1 (1)
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:

Figure 1. A building block of the residual network.
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Figure 2. The architectu?ltleanoo?xResNet model.

GAN architecture

General adversarial networks (GANs) were
suggested by Goodfellow et al in 2014. This model
type consists of two adversarial generative and
discriminative = components that are trained
simultaneously. The generator model learns to
generate new data while the discriminator
determines the probability of whether the input is
data generated by the generator (fake) or real. The
usage of adversarial nets when both models are
multilayer perceptrons is more straightforward. In
this regard, the samples are generated by passing
random noise through a multilayer perceptron
generator with a differentiable function that
represents a mapping to the data space with a
parameter of 0_G. The second multilayer perceptron
is the discriminator with a parameter of 6_D which
determines the likelihood of false or true for the
input data.

The optimization of adversarial nets is similar to
the optimization of a two-player zero-sum minimax
game conducted by jointly optimizing the cost
functions of the discriminator and generator. For this
purpose, each of the 6_D and 6_G parameters were
updated once in every iteration to decrease the
values of the respective cost functions. As the
discriminator is trained to enhance the
differentiation ability, the generator is also trained to
maximize the probability of the discriminator
assigning a true label to the false (artificial) data. In
other words, the generator is intended to generate
data that has a minimum difference compared to real
data (31,

In the generator network, first, random Gaussian
noise that has zero mean and unit variance was
projected followed by the ReLU activation function to
form the first feature maps. In order to achieve the
image with respective sizes, up-scaling layers were
used. Each of the up-scaling layers is composed of a
transposed convolution with 2x2 stride, and
convolution with batch normalization (BN) and ReLU.
They duplicate the size of the previous feature maps
and halve the number of channels. The final layer has
two parts: first a convolution with BN and ReLU, and
second, a convolution with a hyperbolic tangent
function without BN to maintain the true statistical
features of the data.

The discriminator network accepts images and its
correlated three-channel pixel coordinates as the
input. The first convolutional layer with a kernel size
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of 5x5 and leaky ReLU (LReLU) as the activation
function forms the initial feature maps that have the
same size as the input image. By adopting Resnet
blocks and down-scaling layers, the network
duplicates the number of channels and halves the
feature maps in each layer. Each Resnet layer has two
convolutions, both with BN and LReLU, and each
down-scaling layer has a 2x2 stride convolution with
BN and LReLU. The final Logit includes a Resnet, a
projection, an LReLU, and another projection
respectively. Except for the first layer in the
discriminator, all convolutional layers in the
generator and discriminator employ a 3x3 kernel 32).

Model implementation

The training of the ResNet and GAN models was
performed using 86 pairs of brain MR and CT images
as the input/output respectively as part of a six-fold
cross-validation scheme. To this end, these models
were implemented in the NiftyNet platform (version
0.6.0, King’s College Londond, UK) which is a publicly
available pipeline for the realization of deep learning
models. NiftyNet is built on TensorFlow which
consists of common architectures and networks used
for a deep learning approach which can be easily
retrieved and optimized for different tasks. The
application of the NiftyNet platform includes
segmentation, regression, and image synthesis (33).

The training of the models was carried in a
2-dimensional setting wherein each pair of MR and
CT trans-axial slices were considered to be a training
sample. The following training parameters were set
for both the ResNet and GAN models: batch size=30,
sample per volume=2, learning rate =0.003-0.001,
decay = 0.0001, optimizer=Adam, and loss function
=L2.

During the training of the models, 5% of the
training samples were dedicated to the evaluation of
the models within the training to verify the risk of
overfitting. The evaluation and training losses
(errors) exhibited insignificant differences for both
the ResNet and GAN models which show that there is
no risk of overfitting. The training of the ResNet was
completed in 15 epochs as the training loss reached
its plateau while the training of the GAN model took
22 epochs to reach its optimal point.

Evaluation strategy

To evaluate the performance of the ResNet and
GAN models, the resulting synthetic CT images were
compared to the ground-truth CT images. In this
regard, all CT images were segmented into major
tissue types, including air, soft tissue, cortical bone,
and total bone. The intensity thresholds of -450 HU,
150 HU, and 400 HU were applied for the
segmentation of air, total bone, and cortical bone
respectively. Voxels within the range of -450 to 150
HU were considered to be the soft-tissue mask. The
assessment of the major anatomical structures

extracted by the ResNet and GAN models was
conducted using a dice similarity coefficient (equation
1) (9), relative volume difference (RVD) (equation 2),
Jaccard coefficient (equation 3) (34 and sensitivity (S)
(equation 4) over both the entire head and segmented
regions:

214, N4l

DSC(A, Ag) = TA I HTA (1)
RVD(4,.A;) = 1nux%_:lﬂsl (2)
JCty 49 = 05 (3)
5(A.45) = H;’+j*’*' (4)

Where Ar and As represent the intensities of the
volume of interests in the reference CT images and
synthetic CT images. Moreover, by considering the
voxels within the above-mentioned regions, the mean
error (ME) (equation 5), mean absolute error (MAE)
(equation 6), root mean square error (RMSE)
(equation 7), and relative error (RE) (equation 8)
metrics were computed in respect of the reference CT
images. By assuming dA(i)=(As (i)-Ar (i)) Wherein As
(i) and Ar (i) stand for the i-th voxel intensity in the
sCT and reference CT images, the formulae would be:

N
1
= EZL{A{Q (5)
1 N
MAE = EZ I dA(D) | (6)

RMSE = — ,.f{ 02 (7)

(4D = 4D
RE= Z A ®

Where N indicates the number of voxels in the
segmented region. Additionally, for the entire head,
as a single volume of interest, peak signal-to-noise-
ratio (PSNR) (equation 9) and structural similarity
index (SSIM), (equation 10) quantifies the image
quality that was calculated using the following
equations:

IZ
PSNR = mlug( ) 9)

I:_

MSE

oy — (e + K)(26rs + Ky) 10
(uf + uf + Ky)(6F + 65 +K3)

In Eq.9,I denotes the maximum intensity value of
the reference CT or synthetic CT images, and MSE
denotes the mean square error. In Eq. 10, pr and ps
are the mean intensity value, and &: and &s are the
variance of the two corresponding CT images.
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Parameters Ki=(kil)2 and K:=(k:[)2 with the
constants of ki=0.01 and k2=0.02 were defined to
stabilize the division with small denominators.

RESULTS

The training and evaluation of the GAN and
ResNet models was carried out using a six-fold
cross-validation scheme, thus the results reported in
this section were calculated over the entire patient
population.

Figure 4 shows the cross-sectional views of the
generated synthetic CT images along with the
corresponding MR and reference CT images. The
visual investigation revealed that the sCT images
generated by the ResNet model are less noisy and
have a higher similarity to the real CT. Furthermore,
the ResNet model outperforms the GAN model,
leading to more accurate bone and air delineation.

Table 1 summarizes the mean and standard
deviations of the ME, MSE, RMSE, RE, RVD, Dice, ]JC,
Sensitivity, SSIM, and PSNR metrics computed over
the sCT images resulting from the ResNet and GAN
methods compared to the ground truth CT images for
86 subjects. The parameters were calculated within
the air cavities, soft tissue, cortical bone, and total
bone regions, as well as the entire head. On average,
ME, MAE, and RMSE exhibited smaller errors for
most parts of the head region through the ResNet

Generator Network Discrminator Network
Output Logit
_ LReLU
Output Image _ Project
| Resnet
TanH [fi, ]
RelLU
Resnet
. .
[f;.m,] ‘+ Resizing
[fﬂlnl]] : -
— Resnet
lf; ]l <[f 3]« [f1.m,]
— | Concatenation
: '
[fi.ni] ;
[f. n|1]
RelLU
Input noise Input Image~ ;

Figure 3. The architecture of the GAN model.

method. This observation is in agreement with the CT
value bias reflected in the RE and RVD parameters.
Furthermore, both approaches offered comparable
values for the Dice, ]JC, Sensitivity, SSIM, and PSNR
metrics. Altogether, it can be observed that the
ResNet method exhibited slightly superior accuracy
over the GAN method. The boxplots of the
quantitative metrics comparing the performance of
the two methods by considering the real CT images
as a reference, have been presented in figure 5.

Figure 6 represents the axial views of the sCT and
ground truth CT images together with the
corresponding binary masks of soft tissue, total bone,
cortical bone, and air cavities.

The quantitative accuracy of the CT value
estimation using the two proposed methods was
further assessed by the calculation of the Hounsfield
unit differences and the relative error rate between
the real CT and sCT images. It is evident from the
results shown in figure 7 that both approaches led to
a comparable bias.

In addition to the region-wise analysis, a joint
histogram analysis was conducted to display the
voxel-wise correlation between the reference and
estimated CT values. Figure 8 illustrates that the CT
images generated by the GAN and ResNet methods
are highly correlated with the reference CT images.
However, the correlation coefficient is slightly higher
for ResNet (R2=0.98) than GAN (R2=0.97).

Figure 4. Qualitative comparison of sCT and reference CT
images in three axial, sagittal, and coronal views: A) MR
image, B) Reference CT, C) sCT generated by ResNet model D)
sCT generated by GAN model.
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Table 1. Statistics of quantitative comparison between reference CTs and synthetic CTs generated by GAN and ResNet methods
in terms of ME, MAE, RMSE, RE, RVD, Dice, JC, Sensitivity, SSIM, and PSNR. Results are averaged across 86 patients and reported in
the form of average + standard deviation.

Res-Net method air Soft tissue Cortical bone Total Bone Brain total
ME(HU) 38.8+234.8 7.1+6.2 -26.4+150.4 -19.5+111.6 -1.3+38.7
MAE(HU) 486.7+107.6 40.5+6.7 375.0+67.1 292.6148.9 114.1+27.5
RMSE(HU) 153.9+9.6 57.1+5.2 157.4+7.0 156.0+6.0 91.5+5.8
RE(%) -0.43+0.09 -0.20+0.07 -0.11+0.17 -0.02+0.18 -0.09+0.16
RVD(%) 3.65+57.77 0.62+3.24 -2.08+11.32 -1.8518.25 -0.02+0.02
Dice 0.58+0.12 0.94+0.02 0.82+0.04 0.85+0.04 1.00+.0
JC 0.41+0.11 0.89+0.03 0.70+0.05 0.74+0.05 1.00+.0
Sensitivity 0.63+0.19 0.94+0.02 0.84+0.06 0.8610.05 1.00+.0
SSIM - - - - 0.95+0.04
PSNR - - - - 28.65+1.59
GAN method air Soft tissue Cortical bone Total bone Brain total
ME(HU) -213.2+125.0 -12.1+£29.2 -5.9+159.9 34.0+115.6 -5.4+57.5
MAE(HU) 501.0+60.1 67.2+18.5 443.6194.7 323.1+57.4 161.3+38.1
RMSE(HU) 161.2+6.3 77.6x14.0 163.4+7.0 162.8+5.9 111.5+11.8
RE(%) -0.26+0.14 -0.32+0.37 -0.17+0.15 -0.01+0.18 0.18+0.47
RVD(%) 59.381+34.26 -12.21411.32 6.40+16.37 35.02+41.57 -0.10£0.26
Dice 0.53+0.07 0.87+0.07 0.75+0.07 0.73+0.10 1.00+.0
JC 0.3740.06 0.78+0.10 0.61+0.08 0.58+0.12 1.00+.0
Sensitivity 0.44+0.08 0.94+0.02 0.74+0.09 0.66+0.14 1.00+.0
SSIM - - - - 0.94+0.05
PSNR - - - - 26.94+1.53
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Figure 6. Representative slices of sCT generated by ResNet and GAN methods as well as ground
truth CT images along with segmented soft tissue, total bone, cortical bone and air cavities A) MRI,
B) Reference CT, C) Reference soft tissue mask, D) Reference total bone mask, E) Reference
cortical bone mask, F) Reference air mask, G) ResNet CT, H) ResNet soft tissue mask, 1) ResNet
total bone mask, J) ResNet cortical bone mask, K) ResNet air mask, L) GAN CT, M) GAN soft tissue
mask, N) GAN total bone mask, O) GAN cortical bone mak, P) GAN air mask.

A B)
2 2m o 400
=] 2
= e GAN = ——GAN
= 160 Z 40l
——Redet ——Fashet
120 w
§ g 200 |
s ¥ %
# 100 |
40
0 0
-1500 -500 500 1500 -0.25 -0.05 0.15 0.35
= 10000
HU Difference Relative Bror (%)

Figure 7. A) The difference of Hounsfield Unit, and B) the percentage of Relative Error between the reference CT and synthetic CT
images resulted from GAN and ResNet methods.
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0.5
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0.5

0 0.5 1 0 0.5
Reference CT Reference CT
Figure 8. Joint histograms analysis of the sCT generated by the A) GAN & B) ResNet methods with respect to the reference CT

over 86 subjects.
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DISCUSSION

MR-guided synthetic CT generation is an essential
step in MR-only radiation planning and PET
attenuation correction in relation to hybrid PET/MR
scanners. Recent studies have demonstrated the
promising performance of deep learning approaches
to synthesize a "pseudo-CT" from MR-only images for
the task of attenuation correction (35-38) as well as MR
-only radiation planning (1% 39). These approaches
have outperformed conventional synthetic CT
generation approaches such as the atlas- and
segmentation-based methods (14.19.49), [n this light, a
comparison of deep learning-based methods for
challenging tasks (such as MR-guided PET
attenuation correction and radiation dosimetry) is of
particular interest in order to establish a robust
framework with minimal errors. In this work, two
state-of-the-art deep learning algorithms, namely the
ResNet and GAN models, were evaluated for the
estimation of the synthetic CT images from
T1-weighted MRI images in relation to brain imaging.
Their quantitative performance was assessed against
the reference CT images. Though there are a number
of deep learning architectures, the Resnet and GAN
models are regarded as the most powerful, popular,
and effective models owing to their exclusive
properties/characteristics (41). The GAN architecture
benefits from two generator and discriminator cores
which enable the extraordinary capacity to capture/
model the underlying structures/patterns in order to
generate synthetic images. On the other hand, the
Resnet architecture relies on a simpler structure.
However, the entire image processing in the Resnet
model is performed based on the full spatial
resolution of the input image at the different layers
which allows this model to estimate/predict the
desirable outputs with outstanding accuracy and
detail.

The GAN model used in this work has a residual
architecture in the generator component which is
similar to the model developed by Emami et al. (18)
with a residual block for the generator and fully
connected convolutional neural network (CNN) for
the discriminator component. The GAN model
proposed by Emami et al (18 led to 89.3 + 10.3
Hounsfield units (HU) for the mean absolute error
(MAE) over the entire field of view for 15 brain scans,
thus exhibiting superior performance over the CNN
model along with an MAE of 1024 + 11.1 HU,
although the overall MAE of GAN and ResNet models
in this study across the entire brain regions for 86
patients were 161.3+38.1 HU and 114.1+27.5 HU
respectively. These results show a higher error rate
compared to those obtained by Han et al B9
(84.8+17.3 HU), Emami et al. (18 (89.30+10.25 HU),
and Arabi et al 23 (101 + 40 HU). However, a
comparison of these models based on the MAE would
not be fair/reasonable as different patient

populations were used in these studies. Han et al. 39
employed a CNN model trained by 18 subjects using a
six-fold cross-validation procedure, Emami et al. (18)
validated their model using a five-fold cross-
validation framework for 15 patients and Arabi et al
(25) used 40 patients under a two-fold cross-
validation scheme.

The other model assessed in this study was the
ResNet model that benefits from dilated
convolutional kernels that allow for the high-
resolution processing of the input images at different
layers or feature levels without increasing the
complexity of the model. This architecture would be
very effective for the regression processes wherein
inter-modality image conversion is required with a
high spatial resolution. Altogether, the ResNet model
exhibited slightly superior performance over the GAN
model. However, the GAN model could be
implemented in a variety of architectures such as
CycleGAN (42 which is able to show excellent
performance in the specific tasks such as
unsupervised learning. The ResNet model, owing to
its high-resolution processing of the input images,
might be a better option for end-to-end supervised
image translation wherein specific anatomical
features/structures are mapped/reflected in the
resulting synthetic images. The high-resolution and
end-to-end connections of the input and output
images in the ResNet model allowed for effective
synthetic CT generation from the T1 weighted MR
images.

One of the limitations of this study is that it only
focused on brain imaging. However, pelvis and thorax
imaging are important as well in RT planning and
PET AC. Synthetic CT generation from MR thorax
images is highly challenging due to the presence of
the lung and high heterogeneity of the tissues (®.
Moreover, a comparison with other popular deep
learning models such as U-net (providing a baseline
to compare the other approaches) could add to the
value of this work. Therefore, a comparison of
different deep learning approaches should also be
conducted in the thorax and pelvic regions to
determine the most accurate and robust deep
learning-based synthetic CT generation algorithm.
Moreover, this study lacks an evaluation of the
resulting synthetic CT images in terms of radiation
dosimetry wherein the absorbed dose in the
synthetic CT images should be compared to the
absorbed dose in the reference CT images to quantify
the expected errors in MR-only RT planning.

CONCLUSION

The present study evaluated and compared two
state-of-the-art and popular deep learning models
frequently used in research settings for the
challenging task of synthetic CT generation from MR
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images. It was demonstrated that the ResNet model
(versus the GAN model) is able to generate accurate
synthetic brain CTs from MR images for the task of
MRI-only radiation therapy and attenuation
correction in integrated PET/MRI scanners. However,
the performance of these methods should also be
evaluated in other body regions such as the pelvis
and thorax.
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